Skip to contents

Plot a Precision decision Curve

Usage

plot_decision_curve(
  performance_data,
  chosen_threshold = NA,
  interactive = TRUE,
  color_values = c("#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#07004D", "#E6AB02",
    "#FE5F55", "#54494B", "#006E90", "#BC96E6", "#52050A", "#1F271B", "#BE7C4D",
    "#63768D", "#08A045", "#320A28", "#82FF9E", "#2176FF", "#D1603D", "#585123"),
  size = NULL,
  type = "conventional",
  min_p_threshold = 0,
  max_p_threshold = 1
)

Arguments

performance_data

an rtichoke Performance Data

chosen_threshold

a chosen threshold to display (for non-interactive)

interactive

whether the plot should be interactive plots

color_values

color palette

size

the size of the curve

type

What type of Decision Curve, default choice is "conventional". Alternatives are "interventions avoided" and "combined" for both "conventional" and "interventions avoided" on the same view.

min_p_threshold

The minimum Probability Threshold value to be displayed

max_p_threshold

The maximum Probability Threshold value to be displayed

Examples

if (FALSE) {


one_pop_one_model %>%
  plot_decision_curve()

one_pop_one_model %>%
  plot_decision_curve(type = "interventions avoided")

one_pop_one_model %>%
  plot_decision_curve(type = "combined")

multiple_models %>%
  plot_decision_curve()

multiple_models %>%
  plot_decision_curve(type = "interventions avoided")

multiple_models %>%
  plot_decision_curve(type = "combined")

multiple_populations %>%
  plot_decision_curve()

multiple_populations %>%
  plot_decision_curve(type = "interventions avoided")

multiple_populations %>%
  plot_decision_curve(type = "combined")
}