create_decision_curve

create_decision_curve(
    probs,
    reals,
    decision_type='conventional',
    min_p_threshold=0,
    max_p_threshold=1,
    by=0.01,
    stratified_by=['probability_threshold'],
    size=600,
    color_values=['#1b9e77', '#d95f02', '#7570b3', '#e7298a', '#07004D', '#E6AB02', '#FE5F55', '#54494B', '#006E90', '#BC96E6', '#52050A', '#1F271B', '#BE7C4D', '#63768D', '#08A045', '#320A28', '#82FF9E', '#2176FF', '#D1603D', '#585123'],
)

Creates a Decision Curve.

Decision Curve Analysis is a method for evaluating and comparing prediction models that incorporates the clinical consequences of a decision. The curve plots the net benefit of a model against the probability threshold used to determine positive cases. This helps to assess the real-world utility of a model.

Parameters

Name Type Description Default
probs Dict[str, np.ndarray] A dictionary mapping model or dataset names to 1-D numpy arrays of predicted probabilities. required
reals Union[np.ndarray, Dict[str, np.ndarray]] The true binary labels (0 or 1). required
decision_type str Type of decision curve. "conventional" for a standard decision curve or another value for the “interventions avoided” variant. Defaults to "conventional". 'conventional'
min_p_threshold float The minimum probability threshold to plot. Defaults to 0. 0
max_p_threshold float The maximum probability threshold to plot. Defaults to 1. 1
by float The step size for the probability thresholds. Defaults to 0.01. 0.01
stratified_by Sequence[str] Variables for stratification. Defaults to ["probability_threshold"]. ['probability_threshold']
size int The width and height of the plot in pixels. Defaults to 600. 600
color_values List[str] A list of hex color strings for the plot lines. ['#1b9e77', '#d95f02', '#7570b3', '#e7298a', '#07004D', '#E6AB02', '#FE5F55', '#54494B', '#006E90', '#BC96E6', '#52050A', '#1F271B', '#BE7C4D', '#63768D', '#08A045', '#320A28', '#82FF9E', '#2176FF', '#D1603D', '#585123']

Returns

Name Type Description
Figure A Plotly Figure object representing the Decision Curve.