create_precision_recall_curve
create_precision_recall_curve(
probs,
reals,
by=0.01,
stratified_by=['probability_threshold'],
size=600,
color_values=['#1b9e77', '#d95f02', '#7570b3', '#e7298a', '#07004D', '#E6AB02', '#FE5F55', '#54494B', '#006E90', '#BC96E6', '#52050A', '#1F271B', '#BE7C4D', '#63768D', '#08A045', '#320A28', '#82FF9E', '#2176FF', '#D1603D', '#585123'],
)Creates a Precision-Recall curve.
This function generates a Precision-Recall curve, which is a common alternative to the ROC curve, particularly for imbalanced datasets. It plots precision (Positive Predictive Value) against recall (True Positive Rate) for a binary classifier at different probability thresholds.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| probs | Dict[str, np.ndarray] | A dictionary mapping model or dataset names to 1-D numpy arrays of predicted probabilities. | required |
| reals | Union[np.ndarray, Dict[str, np.ndarray]] | The true binary labels (0 or 1). Can be a single array or a dictionary mapping names to label arrays. | required |
| by | float | The step size for the probability thresholds. Defaults to 0.01. | 0.01 |
| stratified_by | Sequence[str] | Variables for stratification. Defaults to ["probability_threshold"]. |
['probability_threshold'] |
| size | int | The width and height of the plot in pixels. Defaults to 600. | 600 |
| color_values | List[str] | A list of hex color strings for the plot lines. | ['#1b9e77', '#d95f02', '#7570b3', '#e7298a', '#07004D', '#E6AB02', '#FE5F55', '#54494B', '#006E90', '#BC96E6', '#52050A', '#1F271B', '#BE7C4D', '#63768D', '#08A045', '#320A28', '#82FF9E', '#2176FF', '#D1603D', '#585123'] |
Returns
| Name | Type | Description |
|---|---|---|
| Figure | A Plotly Figure object representing the Precision-Recall curve. |